MÉTODO Y SISTEMA PARA CALCULAR LA ENERGÍA DISPONIBLE EN UNA BATERÍA ELÉCTRICA EN CUALQUIER MOMENTO DE SU VIDA, SIN DESCARGARLA, ASÍ COMO SU AUTONOMÍA, CAPACIDAD, Y VIDA REMANENTE

DESCRIPCIÓN

5

10

20

25

30

El sector de la técnica

Esta patente pertenece al sector eléctrico, más concretamente al **electroquímico**, y específicamente al de baterías, tanto recargables como de un solo uso. Hasta hoy no se conoce ninguna manera fiable de hallar la **Energía Disponible** de una batería, en adelante **ED**, sin tenerla que descargar, salvo la correspondiente a la capacidad que facilita el fabricante cuando está nueva, cargada, y a la temperatura normalizada. Este método la calcula en todo momento de su vida; es decir cuando ya ha envejecido, ha realizado descargas parciales desconocidas desde su última carga, y todo ello a cualquier temperatura.

El estado de la técnica

Existen numerosos equipos que utilizan baterías eléctricas para su funcionamiento autónomo. El agotamiento imprevisible de la batería puede producir desde incomodidades, hasta graves problemas en función de las circunstancias del equipo que la tenga en uso.

Actualmente no se puede conocer la **ED** de una batería cuando esta envejece, sin descargarla. Y es de gran interés que no se descargue, especialmente cuando se necesite la energía que aún acumule de manera inmediata. También interesa conocer cómo afecta a la autonomía de la batería la temperatura a la que se halle o a la que vaya a estar durante su descarga.

El estado de la **ED** de una batería viene afectado por múltiples circunstancias: como la vejez, el ciclado previo, el **estrés electroquímico** sufrido, las descargas parciales desde la última recarga y las temperaturas a las que se han realizado, incluyendo la que tenga la batería en el momento del análisis, etc.

En general todo el mundo tiene la experiencia de la autonomía de los teléfonos móviles, y su pérdida acelerada al final de su vida útil. Cuando la batería está nueva y recién cargada, la pantalla facilita el estado de carga apareciendo el dato del 100% y, frecuentemente, una pequeña batería verde llena en una esquina. Pero cuando está vieja y recién cargada, también aparece la misma información y la autonomía es muchísimo menor.

Al día de hoy, no se conoce a priori la autonomía de una batería en cualquier momento de su vida. Y muy especialmente si la batería va a ser afectada por una temperatura extrema. Esto ocurre porque la única información disponible proviene de la medición del voltaje, que no es fiable para conocer la **ED**, la capacidad o la autonomía. El voltaje puede orientar en ocasiones sobre el estado de carga, que vale para muy poco si no se conoce la capacidad.

5

10

15

20

25

30

Pocas veces la información de los minutos aún disponibles de un teléfono móvil es importante, aunque no siempre es así. En general, su temperatura de carga y uso cambian poco, lo que ayuda a mejorar la previsibilidad. Ayuda unirle el historial, autonomías previas, curva esperada de pérdida de capacidad, etc. Es decir, extrapolar la historia, pero errará completamente la previsión si a continuación se utiliza en una estación de esquí.

Existen otras aplicaciones donde el desconocimiento de la autonomía puede ser de enorme relevancia. Un buen ejemplo es el vehículo eléctrico, **EV**, donde un error de tal información puede significar no poder llegar por los propios medios a un punto de recarga. O en el caso de que tal punto esté ocupado o averiado, saber si se puede llegar o no al siguiente. De la misma manera es importante conocer la capacidad real de las baterías en actividades donde también es imprescindible la certeza del servicio, como centrales nucleares, trenes de alta velocidad, aviones, instalaciones solares, etc.

Puede ser ilustrativo el siguiente ejemplo. En febrero de 2019, Chicago registró temperaturas de -30°C. Esto supone unos 50°C de diferencia entre la temperatura de carga y la de uso de un **EV**. La pérdida de capacidad con tal diferencia es del orden del 55% de la capacidad remanente. Lo que significó que numerosos vehículos que se cargaron por completo y que en los días anteriores habían realizado sobradamente un determinado recorrido, ese día les resultó imposible y se quedaron parados en muchas carreteras sin energía. Esta es la importancia de conocer cómo afecta la temperatura.

En muchos usos dicho desconocimiento implica al día de hoy un cambio preventivo y prematuro de las baterías ante las dudas de la capacidad real remanente. Una información correcta de tal parámetro supone grandes ahorros, ya que la batería puede trabajar hasta el límite de su vida, sin realizar cambios

Una vez conocida la **ED**, y como aplicación, estaremos en disposición de calcular la **autonomía** que tiene el equipo, sea un teléfono móvil, **EV**, **SAI**, etc., que es función del consumo que se prevea desde ese momento. Dichas necesidades vendrán detalladas en un *Balance Eléctrico de Consumos*, en adelante **BEC**. No es objeto de esta patente analizar el anterior **Balance** ni su obtención, que se da por conocido.

Actualmente no se conoce ningún proceso o dispositivo que ofrezca una respuesta satisfactoria al problema expuesto. Es decir; nada que suministre una solución fiable, sin descargar la batería, condición esta última básica, si se necesita a continuación la carga disponible.

Recientemente están saliendo dispositivos contadores de consumo eléctrico que mejoran la información. Algunos contabilizan y memorizan los últimos consumos para luego extrapolar, incluso acompañados de un algoritmo que sigue la curva de descarga. Pero que no tienen en cuenta aspectos que influyen drásticamente en la capacidad de las baterías, como la temperatura. Las temperaturas de carga y uso pueden tener grandes diferencias. No obstante, vamos a exponer todo lo que conocemos sobre el particular.

Existen diferentes métodos para calcular el estado de carga, incluso el estado de salud o conservación, es decir la situación operativa de la batería. Pero dan solo aproximaciones al problema que planteamos, con grandes errores y sin fiabilidad. Algunos métodos, incluso, consisten en calcular valores medios aplicando dos o más de ellos con el fin de intentar minimizar tales errores. Lo que únicamente tiene interés estadístico.

15

20

25

30

Como hemos justificado, se descartan completamente aquellos métodos que se basan en una descarga total de la batería aplicando un medidor de energía, y que deja a la batería imposibilitada para un uso inmediato. No se pueden aplicar a las baterías primarias, ni por supuesto a aquellas que van a cambiar de temperatura. Sin ser exhaustivos se exponen a continuación algunos de los trabajos consultados:

- a) Los que miden la densidad del electrolito. El mayor inconveniente de estos métodos es que la mayoría de las baterías son herméticas, especialmente las primarias, por lo que hacen su uso imposible. En las baterías accesibles, el electrolito es ácido, con lo que el método resulta muy inadecuado para el usuario común por su peligro. Implica la medición de todas las células que componen la batería, con lo que en las instalaciones que tienen un alto voltaje, y por tanto de número de células, supone un tiempo considerable. Aun así, el método está lejos de ser fiable.
 - En cualquier caso, son incapaces de hacer una predicción si la temperatura cambia. Y en ningún caso de la capacidad, aunque si pueden dar una idea del estado de carga, que sirve para muy poco sin conocer dicha capacidad.
- b) Ley de Peukert. Es un método clásico. No considera la temperatura. Este simple detalle lo descalifica. Puede encontrarse explicado en numerosos sitios, uno de los más sencillos es:

https://en.wikipedia.org/wiki/Peukert%27s law

5

10

15

30

- c) Ley de Sheperd. Se puede realizar el mismo comentario. Al ser clásicos son muy conocidos, por lo que no damos más detalles.
- **d)** Métodos basados en la resistencia interna. Aparte de la dificultad de toma de datos, tampoco consideran la temperatura.

https://www.scienceabc.com/innovation/what-are-the-different-methods-to-estimate-the-state-of-charge-of-batteries.html

e) Algunos trabajos recientes (con menos de año y medio) que se pueden encontrar en Internet donde se explican los métodos básicos tal como:

https://academicae.unavarra.es/bitstream/handle/2454/21830/TFG_GuembeZabaleta.pdf?sequence=1&isAllowed=y

f) También existen numerosas patentes en USA sobre el particular. Referimos las que entendemos que añaden aspectos más consistentes a nuestro objetivo, pero sin alcanzarlo. La siguiente que mencionamos, publicada hace cinco meses, recoge todo el conocimiento puesto al día y, a su vez, hace referencia a numerosas patentes anteriores. No obstante, no considera los cambios de temperatura. En parte nos basaremos en ella. En este primer link aparece tal y como se publica en el Boletín USA.

Patente USA nº 10,302,709, del 28 de mayo de 2019. De Shoa Hassani Lashidani et al.

20 https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=526056D4F68
<a href="#4&HomeUrl=http%3A%2F%2Fpatft.uspto.gov%2Fnetacgi%2Fnph-Parser%3FSect1%3DPTO2%2526Sect2%3DHITOFF%2526p%3D1%2526u%3D%25252Fnetahtml%25252FPTO%25252Fsearch-bool.html%2526r%3D1%2526f%3DG%2526l%3D50%2526co1%3DAND%2526d%3DNM.%2526oS%3DAN%2FCadex%2526RS%3DAN%2FCadex
https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=526056D4F68
https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=526056D4F68
https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=52605%3D1%2526u%3D%
<a href="https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=52605%3D1%2526u%3D%
<a href="https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=52605%3D1%2526u%3D%
<a href="https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=52605%3D1%2526u%3D%
<a href="https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=52605%3D1%2526u%3D%
<a href="https://pdfpiw.uspto.gov/.piw?PageNum=0&docid=10302709&IDKey=52605%3D1%2526u%3D%
<a href="https://pageNum=0&docid=10302709&IDKey=52605605%3D1%2526u%3DAND%2526u%3DAND%2526d5%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex
<a href="https://pdfpiw.uspto.gov/.piw?pageNum=0&docid=10302709&IDKey=52605605%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%3DANM2FCadex%2526RS%2526RS%2526RS%2526RS%2526RS%2526RS%2526R

g) A continuación, mostramos la misma patente en un formato más cómodo para imprimir y leer.

Patente USA nº 10,302,709, del 28 de mayo de 2019. De Shoa Hassani Lashidani et al.

http://patft.uspto.gov/netacgi/nph-

Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2F srchnum.htm&r=1&f=G&l=50&s1=10,302,709.PN.&OS=PN/10,302,709&RS=PN/10, 302,709 h) Ítem más:

5

10

15

25

30

Patente USA nº 9,692,088 Koba et al. 27 junio 2017.

http://patft.uspto.gov/netacgi/nph-

<u>Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9,692,088.PN.&OS=PN/9,692,088&RS=PN/9,692,088</u>,088

i) Ítem más:

Patente USA nº 7,619,417 Klang 17 noviembre 2009.

http://patft.uspto.gov/netacgi/nph-

<u>Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearchbool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN%2F7619417</u>

Esta patente, en el apartado de "Capacity", página 12, líneas 55 a 58 dice literalmente;

"Parece lógico que sería fácil calcular una capacidad pequeña de una batería, pero con el conocimiento actual ha sido y continúa siendo un desafío para la industria de la batería".

Es decir, en el momento en que se escribió esta patente se desconocía cómo hallar la capacidad de una batería. Esta patente la recoge Shoa Hassani, por lo que no parece que haya habido avances hasta hoy.

Adicionalmente, con ninguno de ellos se puede prever el comportamiento de la batería en cualquier momento de su vida y, muy especialmente, cuando la temperatura cambia.

Explicación del método

<u>Glosario</u>

Muchos de los términos que aquí se explican son conocidos, pero conviene concretarlos dados los numerosos errores de concepto que se encuentran en muchos libros y publicaciones.

a) B, W, A: Nombre genérico de baterías. Se reserva B para las que son nuevas, cargadas, completamente formadas y en reposo. Se llaman W a aquellas baterías objeto de este método, con una cierta vejez y alguna carga, incluso nuevas, en cualquier momento de su vida, y a cualquier temperatura. W y B son inicialmente la misma batería, se llama B cuando es nueva y W cuando es vieja. Se utiliza A para las baterías equivalentes que son

nuevas, y están cargadas, es decir aquellas tipo **B** que tendrán una **ED** idéntica a la energía remanente de que dispone la batería **W** que se analiza.

En esta patente se utilizan como ejemplo las baterías de plomo ácido hermético con separadores de lana de vidrio, por sus siglas en inglés **SLA-AGM**. Sealed lead acidabsorbed glass material.

5

10

15

20

30

b) BEC: Es el *Balance Eléctrico de Consumos*. Adviértase que tal balance debe ser muy completo, donde se incluya no sólo las descargas, sino también las cargas, como por ejemplo las provenientes de una frenada en un EV. Y toda corriente que pueda producir estrés a la batería como extra corrientes de apertura y cierre, armónicos, etc., y asimismo las temperaturas previsibles durante cada carga o consumo.

Este **Balance** suele ser variable en función del tiempo. Poniendo de nuevo como ejemplo el **EV**, para obtenerlo se debe introducirlas las cargas eléctricas debidas a la velocidad escogida, el estilo de conducción, el peso y carga del vehículo, y el uso o no de otros consumidores. Si se precisa conseguir más autonomía, se puede cambiar el **BEC** introduciendo menores requerimientos, con el fin de aumentarla. Parte de la información puede a su vez ser fija, como las cuestas o pendientes de una carretera que recorrer, o dinámica, e incluso ajena a nuestra actuación, como una temperatura variable durante tal recorrido. Se supone que el **EV** tiene acceso a las previsiones o informaciones telemáticas. Se le puede dotar de una alarma si los consumos o la autonomía cambian. No es objeto de esta patente analizar u obtener el **BEC** que se da por conocido.

- c) Capacidad. Es la aptitud que tiene una batería para, dadas unas determinadas circunstancias, transformar el máximo potencial electroquímico posible en electricidad útil. Y, si es recargable, mide su aptitud para transformar la electricidad en el máximo potencial electroquímico posible. Se mide en Ah.
- Lo que realmente se considera es la energía, por lo que se entiende que siempre se conoce el voltaje. En ocasiones se da como los watios posibles a suministrar durante un cierto tiempo, con un voltaje final **V**_f y a la temperatura normada. Aquí se promete directamente una energía útil.

No se consideran las diferencias de capacidad inicial de una batería y la máxima que se alcanza después de algunos ciclos, función de la completa formación, etc. La capacidad disminuye cuando desciende la temperatura o cuando aumenta la intensidad de descarga.

- ch) Capacidad nominal C_N . Es la capacidad inicial de una batería nueva. Se define, según la **Norma**, como aquella que permite una descarga I_N en un tiempo t_N , a una temperatura T_N , y con un voltaje final V_f . Verificándose: $C_N = I_N \times t_N$
- d) Capacidad mínima C_m . La Norma define cuál es la menor capacidad remanente aceptable en función del uso a que se destine la batería. C_m suele oscilar entre 0´6 y 0´8 C_N .

5

10

20

25

30

- e) Capacidad remanente C_R de una batería, es la existente en un momento dado, cuando haya transcurrido parte de la vida esperada y se haya perdido cierta capacidad inicial.
- f) C. Es la capacidad de una **batería equivalente** A que se halla como resultado de este método. Será igual o menor que la C_N de la batería analizada. También tiene un significado genérico.
- **g)** C_n . Es la capacidad a la temperatura T_n de una batería W que a T_N tenía una capacidad de C_N . A una temperatura inferior a la normada es menor que C_N . Existe una curva que las relaciona. Dicha curva es válida en cualquier momento de su vida
- h) Carga remanente. A la energía eléctrica útil se le llama también carga. Cuando una descarga sea parcial o si cambia la temperatura, a la carga que queda disponible en la batería, se le llama carga remanente o energía remanente, que son una aproximación a ED, siendo la diferencia la carga mínima no operativa.
 - i) Energía disponible, ED. Es la máxima energía que se puede obtener de una batería W en cualquier momento de su vida, descargándola en determinadas condiciones, hasta llegar al voltaje final V_f . Todas las baterías, especialmente las recargables, tienen un voltaje final de descarga, que varía según la intensidad de descarga. En las recargables este V_f es el mínimo que no se debe rebasar, ya que supone un deterioro irreversible de la batería. Por otra parte, suele estar cerca del voltaje mínimo operativo del equipo que alimenta.

En las primarias este concepto no es aplicable, ya que simplemente el equipo deja de funcionar. En ese punto V_f existe una cierta carga mínima, o energía mínima, que proporcionalmente es muy pequeña. El concepto de ED resulta ser el total de energía remanente menos esa energía mínima de la que no se debe disponer para evitar estropear la batería, y que habitualmente se desprecia por su valor relativamente muy pequeño. Resulta fácil de calcular. Dicha energía mínima varía para la misma batería en función de la temperatura y de la intensidad de descarga, ID. Dada la pequeña diferencia, y en

primera aproximación, aceptaremos en determinados puntos usar indistintamente ED, carga remanente o potencial electroquímico activo.

j) Estado de carga. Al nivel o cantidad de carga porcentual remanente de la batería **W**, frente a la máxima que la capacidad en ese momento permita, se le llama estado de carga. La capacidad no tiene relación alguna con el estado de carga, ni con el voltaje en circuito abierto cuando está cargada. Hay que conocer simultáneamente la capacidad y el estado de carga para saber cuál es la **ED**. Existe una curva que relaciona el estado de carga con el voltaje. El acrónimo en inglés es **SOC**, state of charge.

5

15

20

25

30

- k) EV. Es el acrónimo en inglés de electrical vehículo eléctrico. Habitualmente se
 llama así a los 100% eléctricos. Si son mixtos se llaman híbridos, HEV. Y si adicionalmente son enchufables, PHEV.
 - I) $G_{n,l}$. Dada una batería nueva B con capacidad C_n , voltaje V_N y a temperatura T_n , se llama así a una familia de curvas de descarga generadas por una misma ID fija I, aplicada a B y a varias baterías nuevas y cargadas de diferentes capacidades inferiores a B, todas a igual temperatura. La ID está predeterminada manualmente o por el Sistema, suele variar entre 0´1 C_n y 2 C_n Amp., y las capacidades de las baterías a descargar entre 0´1 C_n y C_n Ah. Un ejemplo posible es $G_{n,1\acute{0}}$, que es la familia correspondiente a la temperatura T_n , a la que la batería B tiene una capacidad de C_n . Se escoge una descarga igual a 1´0 C_n Amp. para las baterías que siguen que tienen, por ejemplo, capacidades de 0´3 C_n , 0´5 C_n , 0´7 C_n , y C_n Ah. Estas curvas permiten su interpolación. Ver Figura 1.
 - m) ID, I_i, I_N. Intensidad de descarga, y también en plural. Las dos primeras grafías son genéricas. Con la segunda, se puede hacer referencia a un <u>conjunto</u> de intensidades genéricas de descarga I_i, que al variar el subíndice permite representar varias intensidades concretas. La normada de referencia es I_N. Se mide en amperios y, orientativamente, en este método varía entre I_N Amp. y 60 I_N Amp.
 - En baterías **SLA**, las descargas usuales varían entre **0**′**01** y **3** C_N **Amp**. La normada para conocer la capacidad en el plomo suele ser **0**′**05** C_N **Amp**. y t_N = **20** h. Las descargas se realizan hasta un voltaje V_f para que la batería no se dañe. Las curvas se representan en unos ejes de coordenadas cartesianos ortogonales que miden el voltaje en las ordenadas y el tiempo en las abscisas en una escala logarítmica.

No debe perderse de vista que cuando se demanda a una batería una descarga de **I Amp.**, lo que realmente se hace es requerirle energía, es decir, se descargan vatios hora, ya que se trabaja a unos determinados voltios y durante un cierto periodo de tiempo.

n) MCU. Sigla del inglés de Micro Controler Unit, es decir de Unidad de Micro Control. Comprende las **CPU** (Central Processing Unit), con uno o más microprocesadores multinúcleo, memorias, algoritmos, software, etc.

5

20

25

- ñ) Norma. Adscribiéndonos a nuestro sector, es el conjunto de reglas, formulaciones, criterios, especificaciones y estándares técnicos que limitan, concretan, tipifican y definen los parámetros que caracterizan a las baterías. Permite conocer y comparar fácilmente sus prestaciones. Entre las normas técnicas más conocidas se pueden mencionar DIN, JIS, IEC, CEI, UL. Mientras unas se centran en consideraciones técnicas, otras lo hacen en la seguridad de uso.
- La **Norma** puede ser dictada por cualquiera, pero es altamente recomendable seguir las conocidas. En nuestro caso, específica para cada tecnología la temperatura de trabajo, el tiempo e intensidad de descarga, voltaje nominal y mínimo **V**_f a distintas intensidades de descarga, capacidad normal **C**_N y mínima **C**_m, entre otras cosas. Todas las mediciones y curvas deben seguir dicha **Norma**. Cada tecnología y **Norma** suponen distintas curvas.
- o) p. Es el porcentaje de potencial electroquímico o de ED de una batería equivalente A con capacidad C, que se ha consumido al realizar una descarga incompleta sobre el total potencial inicial. Por lo que ED(1 p) es igual a la ED remanente, que equivale a C (1 p).
 - p) Potencial electroquímico. Es la energía residente en ciertas substancias químicas que, correctamente activadas, pueden proporcionar energía eléctrica. La batería es un recipiente adecuado que contiene una serie de productos con potencial electroquímico, y es el medio físico donde se produce la reacción que transforma tal energía potencial en electricidad.
 - En una batería cargada y aislada no existe electricidad alguna. Solo existirá propiamente electricidad cuando se produzca la reacción **electroquímica** que la genera. Y para desencadenarla es necesario un circuito exterior conectado a la misma. La electricidad la produce la reacción química que tal conexión causa.

La energía potencial de una batería cargada y otra descargada son diferentes. A la primera situación se la denomina **potencial electroquímico activo**, y a la segunda **potencial electroquímico pasivo**.

30 **q) SAI.** Acrónimo de Sistema de Alimentación Ininterrumpida. En inglés UPS.

r) Sistema. Nombre del dispositivo que permite automatizar el cálculo del método, para lo que comprende un conjunto de elementos tales como MCU, memorias, microprocesadores, circuitos electrónicos, procesador de algoritmos, voltímetro, descargador, amperímetro, sensor de temperatura, cronómetro, capacidad de calcular parámetros y generar curvas, comprendiendo asimismo adaptador, los correspondientes software y hardware, interfaz, etc., que nos permite informar de las variables y recibir los resultados, e incluso considerar información vía telemática. Ocasionalmente también se le llama Sistema de Gestión de la Batería, en inglés BMS. Aunque este último término, con frecuencia, se suele usar para una gestión mucho más simple de control sobre la carga, la descarga, y el limitador.

5

15

20

25

- s) SLA-AGM. Siglas de Sealed Lead Acid y Absorbed Glass Material, que se traduce por plomo ácido hermético con separadores de fibra de vidrio. Es la tecnología de batería que esta patente usa como ejemplo, ya que posiblemente sea la más popular, madura, y con una evolución bastante estable.
 - t) SOC. Acrónimo de state of charge, que se traduce como estado de carga. De uso muy frecuente en el sector.
 - u) t_N . Tiempo nominal. Es el tiempo que la Norma fija que debe transcurrir cuando la batería B se descarga a intensidad l_N , a la temperatura T_N y sin que el voltaje baje de V_f . Cuando se refiera a *valores genéricos del tiempo* se utiliza t. Si se escribe t_M significa que es el tiempo de máxima autonomía de una batería con capacidad C, a una ID concreta. Suelen aplicarse gráficos logarítmicos donde la abscisa es la ID y la ordenada la autonomía. Ver Figura 4. Se suele utilizar t_N = 20h para el plomo.
 - v) T_N. Es la temperatura que la Norma propone para medir los valores normalizados, y particularmente durante la generación básica de curvas. Cuando la temperatura varía se utiliza genéricamente el subíndice "n", T_n. Usualmente T_n está entre -30°C, y 60°C. Existe una curva que la relaciona con la capacidad. Si se requiere de una batería 1 Ah a distintas temperaturas, el coste en energía será distinto.
 - w) Voltaje nominal V_N. Viene definido por la tecnología electroquímica de construcción de la batería. Este voltaje o tensión resulta de la suma algebraica de los potenciales normales de reducción y oxidación a 25°C de los electrodos. Así, y como ejemplo, se calcula a continuación para una batería de plomo. En la descarga para una concentración 4 molal de ácido sulfúrico, el potencial normalizado de oxidación del electrodo positivo PbO₂, cátodo, a 25°C, es del orden de +1´70 Volts. Y para el electrodo negativo Pb, ánodo, el potencial de reducción es de unos -0´33 Volts. Suma 2´03 Volts. Hay que restar el

negativo. Y este es su V_N . Puede subir o bajar con la concentración de ácido, de ahí que la medida de la densidad del electrolito en baterías abiertas dé una idea de su estado de carga, ya que la descarga descompone parte del ácido en agua. La carga de la batería supone una circulación de electricidad inversa, y los electrodos invertirán su polaridad. Si una batería secundaria en reposo tiene un voltaje inferior a V_N , necesita una recarga urgente.

x) Voltaje máximo V_M es el que la batería alcanza cuando está en reposo y completamente cargada. Debe ser siempre superior a V_N .

5

15

20

25

30

y) Voltaje intermedio V_v. Es un voltaje genérico que varía entre V_M y V_f. z) Voltaje final V_f.
 10 Es el mínimo que se puede alcanzar en una descarga para evitar que la batería se dañe.
 En ese punto final V_f aún quedará una cierta *carga remanente* muy pequeña. El voltaje final V_f varía en función de la intensidad de descarga. Ver más en i).

Base teórica

Este método tiene su origen académico en un enfoque que hasta ahora no ha evolucionado. Una gran parte del sector plantea implícitamente el problema como si la batería fuera un depósito de gasolina. Se requiere en cualquier momento y condición que estén disponibles los mismos litros que se han introducido. En el caso de la batería, los mismos amperios hora suministrados. Y no es así.

El método que se patenta resulta válido tanto para baterías primarias como recargables, abiertas o herméticas, y de cualquier tecnología, siempre que descontemos el efecto memoria. Para las baterías secundarias, la reversibilidad no consiste únicamente en el **proceso electroquímico**, sino también en el **mecánico**, ya que las masas activas deben ser repuestas en los correspondientes electrodos cuando el proceso de carga los regenere. Estas reacciones son siempre exotérmicas, por lo que parte de la energía utilizada se empleará en la producción de calor.

Como las curvas $G_{n,l}$, son la base de esta patente, se explica su obtención a continuación. Dada una batería nueva B con capacidad C_n , voltaje V_N , y a una temperatura T_n , se llama así a una familia de curvas de descarga producidas por una misma ID fija I, aplicada a B y a varias baterías nuevas de diferentes capacidades inferiores a B, siempre a la misma temperatura. La ID está predeterminada manualmente o por el Sistema, suele variar entre O'I C_n y C_n C_n

capacidad de C_n . Se escoge una descarga igual a **1´0 C**_n **Amp**. para las baterías que siguen, que tienen capacidades de **0´3 C**_n, **0´5 C**_n, **0´7 C**_n, y **C**_n **Ah**. Estas curvas permiten su interpolación. Ver **Figura 1**.

A continuación, se utiliza la misma descarga I y se aplica a W, que devuelve una respuesta V_V, comenzando una curva de descarga nueva. Con dicha respuesta buscamos en G_{n,I} una batería equivalente A, lo que permite hallar ED. El comportamiento de A será idéntico al de la batería W en ese momento, por lo que para considerar cualquier cambio de ID o de T_n, utilizaremos esta batería equivalente, que tendrá la misma respuesta. En nuestro ejemplo, la curva generada es la de puntos, y A tendrá una capacidad de 0´4 Ah.

5

30

Volviendo a evaluar los criterios para escoger las **ID**, debe considerarse que las curvas que se produzcan proporcionen una respuesta clara y diferenciable. Si la descarga fuera proporcionalmente muy pequeña, la cercanía entre sí de las curvas respuesta dificultaría su diferenciación. Tampoco conviene que la descarga sea demasiado grande ya que implicarían conexiones y resistencias sobredimensionadas para los objetivos.

15 Cuando una **ID** es proporcionalmente muy alta, la **capacidad** disminuye mucho debido a que la reacción **electroquímica** no tiene tiempo de completarse alcanzando a toda la masa activa, como asimismo a la energía dedicada a producir calor. El calor que debe disiparse, supone una pérdida irrecuperable de **potencial electroquímico**, aunque el efecto es pequeño ya que el tiempo es muy breve, entre cinco y veinte segundos. Adicionalmente se produce un cierto estrés a la batería

Pueden utilizarse también pulsos de cualquier tipo. Debe tenerse en cuenta la situación de la batería hasta donde se conozca para que se compadezca con la ID. Siempre conviene empezar por las descargas mínimas operativas. En general suelen variar entre $0^{\prime}1$ C_n y 2 C_n Amp. En el caso de SLA-AGM se puede comenzar entre $0^{\prime}6$ C_n y 1 C_n .

Este método es aplicable a cualquier batería **W** en cualquier momento de su vida. Si por mediciones previas se conoce la capacidad actual, incluso aunque esté desfasada, debe partirse de ese valor en lugar del valor de la capacidad nominal cuando era nueva. No obstante, se sigue suponiendo que no se dispone de información previa.

Asimismo, y como utilidades o aplicaciones existen las siguientes. Conocida la **ED** y el **BEC**, se puede calcular la **autonomía** a la temperatura que deseemos. Incluso en el supuesto que las temperaturas y las descargas que se produzcan sean variables.

También se puede calcular la **capacidad**. Después de una recarga, cuando observemos que el cargador no suministra electricidad apreciable a la batería, lo desconectamos y calculamos **ED**. Dicho valor resulta ser la **capacidad** de la batería **W** a la temperatura de medida. Si la batería fuera primaria, la **ED** coincide con su **capacidad** en todo momento.

Con la curva de la evolución de la **capacidad** en el tiempo, puede calcularse la **vida** remanente t_R. Debe aclararse que el uso correcto del término **vida esperada** t_W, sirve para especificar el tiempo máximo de vida útil de un producto nuevo en unas circunstancias determinadas. Se puede utilizar el mismo concepto para baterías. Interesa más hallar en nuestra patente la **vida remanente** t_R, es decir, la restante vida útil a partir de cualquier momento. Conviene partir del conocimiento de las curvas L_M y L_D, que facilita el fabricante y que pueden estar normalizadas.

Para calcular dichas curvas se utilizan unos ejes cartesianos ortogonales en los que se mide en las abscisas el tiempo, y en las ordenadas las capacidades. Se calcula L_M utilizando la batería con el máximo cuidado posible, y memorizando los puntos formados, a lo largo de su vida, por su capacidad y el momento de su medición. L_M acaba en el punto que señala su **vida máxima** (t_M , C_m) donde la ordenada alcanza la capacidad mínima operativa C_m . Véase **Figura 5**.

15

20

25

30

De la misma manera se haya la curva L_D , en donde se da un trato abusivo a la batería, produciéndose un gran **deterioro** prematuro, cuya vida se extiende hasta (t_D, C_m) . Ambas parten del mismo punto $(0, C_N / C_n)$, al ser las baterías evaluadas idénticas. Si la temperatura de medición de la capacidad habitual es T_n , dicho punto es $(0, C_n)$.

Por último, la batería W, que se analiza, ha generado una curva L_W hasta un punto P (t_P , C_R), momento en el que interesa conocer la **vida remanente** t_R . La coordenada t_P es el tiempo transcurrido desde su entrada en servicio hasta que se desea saber la **vida remanente** t_R .

Se acepta, por el momento, que el trato que va a recibir la batería sea similar al recibido. A partir del punto $\bf P$ resulta fácil interpolar entre $\bf L_M$ y $\bf L_D$ para extrapolar la curva hasta $\bf Cm$, y obtener por una parte la **vida esperada** real $\bf t_w$, con el trato particular recibido, y así obtenemos la **vida remanente** $\bf t_R$ desde el punto $\bf P$ que resulta ser: $\bf t_R = \bf t_w - \bf t_P$.

Si se espera una variación del trato o de las condiciones de vida, la interpolación permite considerarlo. En la **Figura 5** se ha supuesto que dicho trato esperado era similar al ya recibido. Si no fuera así, las matemáticas trazarían una curva más cercana a L_M o a L_D

Información y equipamiento necesarios para el análisis

Interesa disponer al menos de los equipos y datos que se enumeran a continuación.

- a) El fabricante informa de la tecnología empleada en la fabricación de la batería W, de su capacidad nominal C_N y de su voltaje nominal V_N cuando eran nuevas, curvas, etc., y de la **Norma** que se aplique para definir la batería, (DIN, JIS, SAE, etc.).
- b) Se necesita un sensor de temperatura que mida la que tiene la batería W en el momento del análisis. Este dato nos permite conocer la capacidad C_n a dicha temperatura T_n cuando era nueva, mediante la curva correspondiente.
- c) Debe disponerse de un descargador, con conexiones adecuadas a la batería, que permita escoger las ID que serán del orden de 0´1, 0´6, 1´0, 1´2, 1´4, y 2 C_n Amp. o intermedias. Se propone una ID preferente de 1´0 C_n Amp. Pero se puede utilizar cualquier otra. Adicionalmente dispone de amperímetro y voltímetro.
 - d) Las familia de curvas de descarga $G_{n,l}$, correspondientes a la temperatura T_n .
 - e) Tablas logarítmicas a las diferentes temperaturas del rango, que informen de la autonomía en función de la descarga para cada capacidad midiendo las descargas en las abscisas y la autonomía en las ordenadas, diferenciándose según tecnologías y voltaje. Siempre se debe respetar el voltaje final V_f de la batería siguiendo la Norma. Se incluye un ejemplo según Figura 4.
- 20 **f)** Para calcular la **autonomía**, es necesario conocer el **BEC**.

5

10

15

25

30

- g) En el caso en que se detecte que hay un cargador actuando, debe poderse desconectar. Tampoco se admiten cargas o descargas variables en ningún momento del análisis a nivel manual o de laboratorio. Aunque en la **Aplicación Industrial** si se pueden considerar, así como realizar iteraciones que permitan una mayor precisión.
- h) Para calcular la vida esperada, t_W y la remanente t_R en un determinado momento es preciso tener información del trato que va a recibir la batería, y asimismo conviene disponer de las curvas L_M y L_D.

Explicación del funcionamiento del método

Se expone aquí cómo obtener **ED** de una manera sencilla, con la ayuda de un aparataje básico. Se sigue el diagrama de flujo simplificado según **Figura 2**. Posteriormente, en la **Realización Preferente** se explica la manera de automatizar todo ello para que pueda ser utilizado sencillamente por cualquier usuario.

Cuando se comienza el análisis pueden producirse dos situaciones. Que la batería se encuentre en perfecto reposo, o que esté soportando alguna descarga. El amperímetro aclara en que caso estamos. Se comienza por una batería **W** en reposo según el siguiente orden:

5

10

15

20

- 1) Se conoce la tecnología de la batería, su capacidad C_N cuando era nueva, su voltaje nominal V_N , así como las curvas $G_{n,11}$ para la ID escogida I_1 .
- 2) El sensor suministra la temperatura de W que resulta ser T_n. La utilización de la curva correspondiente permite conocer la capacidad de la batería W, cuando era nueva B, a tal temperatura, que resulta ser C_n.
- 3) Se conecta la batería, y el descargador ajusta la ID inicial I₁, siguiendo el criterio del usuario y las recomendaciones que se dan en la Base teórica. Si existen razones para pensar que, dadas las condiciones de la batería, puede tener una capacidad menor que C_n, se disminuye adecuadamente la ID. Esta intensidad debe ser la misma que la utilizada para generar G_{n,l}.
- 4) Comienza la descarga. Se observa la curva del descargador durante el tiempo necesario, algunos segundos, hasta que se estabilice y se obtenga un voltaje estable V_v, y por tanto el inicio de la curva de descarga. Si esta curva no está clara, seguiremos probando con algo más de tiempo o con otras descargas. Cada descarga supone diferentes curvas G_{n,l}.
- 5) Como ejemplo se propone G_{n,1'0}, donde se busca, interpolando si es preciso, la curva producida por la descarga I₁ = 1'0 Cn Amp. a la batería W, y que comienza con el voltaje respuesta V_v. En este ejemplo resulta ser la curva correspondiente a 0'4 C_n Ah. Ver Figura 1. Esta curva de descarga es igual a la que produce una batería equivalente A, nueva, cargada, y con una capacidad de C = 0'4 C_n Ah.
- 6) Se concluye que la ED de la batería analizada W, tiene un comportamiento análogo al de una batería equivalente A, nueva, con capacidad C = 0´4 C_n Ah, y completamente cargada. Ahora se conoce la ED buscada, que resulta ser la de la batería A.
- 30 En el segundo caso existe un consumo que no se desea o no se puede evitar, lo que resulta ser una situación habitual. Se vuelve a poner como ejemplo un **EV**. Algunos consumidores no se pueden inhibir, tales como el reloj, ordenador de a bordo, etc, incluso aunque para el cálculo podamos apagar los más importantes como el motor, o el aire acondicionado. En este caso se deben conseguir valores instantáneos y perfectamente

simultáneos del amperímetro, $\mathbf{l_2}$, y del voltímetro, $\mathbf{V_2}$. A continuación se procede como sigue.

1) Se dispone de I_2 , de V_2 , y de la temperatura de la batería T_n .

5

10

15

20

25

30

- 2) También de las curvas $G_{n,l2}$ correspondiente a I_2 amperios y a la temperatura T_n . La descarga I_2 genera una curva que se inicia con V_2 con la que se obtiene una batería equivalente A_2 con capacidad C_2 , nueva y cargada.
- 3) En el caso en que I₂ sea demasiado pequeña, a continuación, se añade la descarga adicional de I₁ Amp., que es la misma que se utilizaría si la batería estuviera en reposo, y se repite el proceso anterior teniendo en cuenta que ahora se busca en G_{n,l3} ya que la ID es ahora; I₃ = I₂ + I₁ Amp.

En teoría, se debería volver a encontrar la misma capacidad C_2 . No obstante, y dado que la batería no está en reposo, ni equilibrada, las mediciones pueden estar distorsionadas y puede encontrarse una C_3 diferente. Opinamos que es más exacta la capacidad hallada en esta última ocasión, pero es razonable realizar una ponderación dando el peso a cada una según lo que la situación concreta aconseje. O realizarse más descargas.

Si se ha utilizado con anterioridad este método, cuando la batería ya no era nueva, y se conoce aproximadamente su **capacidad** actual, se utiliza esta última como nominal de partida. Por lo que, rigurosamente hablando, sólo en el primer cálculo se utiliza **C**_N. En cálculos subsiguientes se parte de la última capacidad hallada. Por lo que nunca se repite la capacidad original en sucesivos usos del método. Salvo cuando se utilice iterativamente para refinar la respuesta.

Una vez calculada la **ED** a la temperatura de medición, como utilidad o aplicación, se puede hallar la **autonomía** conocido el **BEC**. Se pone a continuación un ejemplo.

Sea una batería W, con su ED conocida, a la que corresponde una capacidad equivalente de C_1 . El BEC informa que se van a realizar dos descargas consecutivas D1 y D2 distintas. La primera D_1 , a intensidad I_1 y temperatura T_1 , tiene una duración de t_1 . Se entiende que esta descarga no agota la batería. A continuación, con la energía remanente se realiza la segunda descarga D_2 , que consiste en una ID de I_2 , a una temperatura T_2 , y durante el tiempo máximo que dicha energía remanente permita. Interesa calcular dicha **autonomía**.

La combinación de las descargas propuestas permite abordar todos los planteamientos posibles de consumo. Se calcula a continuación el porcentaje $\bf p$ de energía de $\bf W$ que $\bf D_1$ consume sobre el total disponible.

a) Con la tabla logarítmica Figura 4 correspondiente a nuestros parámetros T_1 , I_1 , C_1 , etc., se halla el tiempo de **autonomía total t_{M1}** que permite la batería.

5

10

15

30

- b) La relación t₁/t_{M1}, es el porcentaje aproximado de energía utilizado por D₁ en el tiempo t₁. Es decir p. La energía remanente es C₁ (1 p), a la que corresponde una nueva batería equivalente con una C₂ que se utiliza a continuación.
- c) De nuevo con la tabla logarítmica y las curvas que correspondan a D₂, I₂, C₂ y T₂, se halla t_{M2}. Este punto informa del tiempo total de autonomía de W con las condiciones anteriores.

Utilizar el tiempo introduce un cierto error ya que desconocemos los valores medios de **V**, más laboriosos de encontrar en el último tramo de la curva. Se puede hacer un cálculo rápido más aproximado suponiendo los valores medios de **V**. Aunque si realizamos un análisis de sensibilidad se comprueba que errores del **2** o **3%** en su cálculo, producen variaciones pequeñas en el valor de la energía. Por último, sería más correcto obtener la ecuación de la curva de descarga y realizar una integración, pero añadiría una innecesaria exactitud y una evidente complejidad. Cuando se automatiza el método en la **Realización Preferente**, el cálculo de la **ED** es instantáneo y exacto.

Para terminar, se exponen aquí dos utilidades o aplicaciones adicionales. Cuando la batería que se analiza esté completamente cargada y en reposo, la **ED** proporciona la **capacidad**. Y con la curva de la evolución de la misma en el tiempo, su **vida esperada t**_w y la **remanente t**_R, siempre que el trato posterior que vaya a recibir la batería sea conocido.

Breve Descripción de los Dibujos

Se incluyen cinco figuras que ayudan a comprender el método. Son particularizaciones, por lo que pueden ser sustituidas por otras incluso con variaciones, sin perder validez ni afectar al alcance de lo expuesto.

En la **Figura 1**, se representa un ejemplo de una familia de curvas de descarga $G_{n,1'0Cn}$, de una batería **B** nueva con una capacidad C_n , a la temperatura T_n , y utilizando una **ID**, **I** = 1'0 C_n Amp. Las baterías más pequeñas que escogemos tienen capacidades de 0,3 C_n Ah, 0,5 C_n Ah y la 0,7 C_n Ah. Si ahora se aplica la misma descarga I a la batería W, el voltaje

respuesta V_v inicial, comienza a generar una curva que resulta ser la $0^{\prime}4$ C_n Ah., que es la correspondiente a la **batería equivalente** A.

En la **Figura 2**, se representa un diagrama simplificado que muestra el flujo de acciones para encontrar **ED**, conocidos los datos que definen la batería **W**. Este diagrama no está completo en aras de la claridad de la exposición. Por ejemplo, los pasos que se aplican a **V**₁ preguntando sobre la estabilidad, contador de ciclos etc., se han ahorrado en **V**₂ y **V**₃. Conocer **C**₁, **C**₂ o **C**₃ significa conocer **A**₁, **A**₂ o **A**₃, y por lo tanto **ED**.

5

10

15

20

25

30

En la **Figura 3** se representa un diagrama simplificado que sigue el proceso automatizado del método que se patenta aplicado a un dispositivo, es decir de la **Aplicación Preferente**.

En la **Figura 4** se dibuja un ejemplo de unas tablas logarítmicas a **25** °C y de un voltaje **V** que informan de la **autonomía**, en función de la **ID** y de la capacidad de las baterías **SLA-AGM**. En este caso escogemos **0,3** C_n Ah, **0,5** C_n Ah, **0,7** C_n Ah y C_n Ah.

En la **Figura 5** se dibujan las curvas L_M , L_D , y L_W que permiten hallar la **vida esperada t**_W y la **vida remanente t**_R de **W**.

Realización Preferente

El objetivo es fabricar un dispositivo que automatice el método expuesto para hallar la **ED** de una batería **W**. Se sigue el diagrama de flujo simplificado según **Figura 3**. Puede ser portátil o no, y con capacidad de ajuste en función de las características de las distintas baterías que se deseen analizar en determinados rangos de voltajes o capacidades. O bien adaptarse desde un inicio a una batería particular.

Se precisa un **Sistema** que comprenda un interfaz, un adaptador, un descargador, sensor de temperatura, voltímetro, amperímetro, cronometro, una **MCU** y el software necesario para registrar, memorizar y analizar las curvas que produzca el descargador y compararlas con las que tenga en memoria mediante los algoritmos que se proporcionen, etc. Este software controlará el dispositivo, así como las comunicaciones con equipos externos. Está habilitado para la tecnología y **Norma** que el fabricante de la batería especifique y se simplifica mucho si se prepara para una batería concreta. De esta forma su utilización comprende los siguientes pasos:

A) El fabricante informa en primer lugar de la tecnología de la batería, así como su capacidad C_N , su voltaje nominal V_N , curvas, etc. cuando era nueva B.

- B) Se introducen en el Sistema todos los datos a través de la interfaz. Una vez conectada la batería W, comienza el análisis. Existen baterías que al conectarlas transmiten al Sistema todas sus características. Pero no hará falta cuando se realice la aplicación a la misma batería, como ocurre con un EV o en un teléfono móvil.
- **C)** El amperímetro comprueba si la batería está en reposo. Inicialmente se considera que sí.

5

10

15

20

25

30

- D) El sensor suministra la temperatura a la que está la batería, T_n. Con dicha temperatura y la curva correspondiente residente en la memoria que relaciona las capacidades y las temperaturas, el Sistema concreta la capacidad C_n, que es la que corresponde a B, y que es la mejor aproximación de la que disponemos en el primer análisis.
- **E)** El **Sistema**, siguiendo las instrucciones que tiene memorizadas escoge la intensidad de descarga inicial **I**₁. Esta descarga puede alimentar un super condensador y utilizar la energía acumulada posteriormente.
- F) Una vez que el Sistema obtiene un voltaje de respuesta estable V₁, busca en G_{n,l1}, interpolando si es preciso, la curva que comience con el voltaje que acaba de medir. Esta curva es la misma que produce la descarga de una batería equivalente nueva A₁, cargada, y con una capacidad de C₁.
- **G)** Con la **ED** conocida, el **Sistema** puede optar por mostrarla en un interfaz, o suministrarla a otro equipo que la precise, lo que se integra con gran sencillez en el dispositivo que ya tenemos.

Supóngase ahora que el amperímetro del **Sistema** detecta que existe una descarga continua y estable. Si la descarga no tuviera dichas condiciones se deben medir valores instantáneos y simultáneos. El amperímetro facilita al **Sistema** el consumo que se está realizando I_2 , el voltímetro el voltaje V_2 , el sensor la temperatura de la batería W, T_n , y se calcula C_n . A continuación, siguen las etapas que se exponen.

- Busca en G_{n,l2}, obtenida con I₂ amperios y a la temperatura T_n, la curva de descarga correspondiente a V₂,. Como anteriormente, obtiene la que corresponde a una batería equivalente A₂, de capacidad C₂ nueva y cargada.
- 2) El Sistema añade ahora una descarga adicional I₁, calculada como anteriormente para el caso en que la batería estuviese en reposo, y repite el proceso anterior, teniendo en cuenta que debe buscar en G_{n,I3}, ya que la intensidad de descarga es I₃ = I₁+I₂. Obtiene C₃. Si advirtiera que I₂ es igual o superior a I₁, disminuirá el primer sumando lo que proceda. Incluso anulándolo, y dando por buena C₂.

En teoría C_3 debiera ser similar a C_2 . No obstante, y dado que la batería no está en reposo, ni equilibrada, las mediciones pueden estar alteradas. Probablemente es más exacta la capacidad hallada en último lugar C_3 , pero es razonable calcular una ponderación dando el peso a cada una según lo que la aplicación concreta aconseje. También pueden hacerse mediciones iterativas consecutivas adicionales cambiando la descarga etc. Después de este cálculo, se conoce la ED, a la temperatura de medición, es decir la **batería** equivalente A_3 .

5

10

15

20

25

30

Como utilidad o aplicación, conocido el **BEC**, se puede hallar sencilla y rápidamente la **autonomía** de la misma forma ya explicada. Esta rapidez permite que una vez aplicado el **BEC**, si la **autonomía** resultante es inadecuada por insuficiente, se puedan realizar búsquedas adicionales de nuevas autonomías. Para lo que debemos modificar el **BEC**, eliminando o rebajando las demandas susceptibles de reducción. O aceptar las que el dispositivo proponga.

Poniendo un **EV** como ejemplo, se puede disminuir la velocidad de crucero. O el equipo proponer una nueva, o un combinado de varias en función del perfil de la carretera, y las temperaturas esperadas en los distintos tramos que permitan la autonomía requerida. Es fácil incorporarlo a la conducción autónoma.

Otra aplicación consiste en hallar la **capacidad** de la batería. Si finalizada una carga el **Sistema** detecta que el cargador no suministra intensidad alguna o es muy pequeña, desconecta dicho cargador y procede a calcular **ED**. En tales condiciones la **ED** encontrada coincide con la **capacidad** de la batería.

En el caso de la bancada de un **SAI** permite conocer rápidamente la **ED**. Como es un equipo que suele estar perfectamente cargado, desconectando unos segundos el cargador y las cargas (e incluso sin desconectarlas si no fuera posible), dicho **ED** resulta coincidir con la capacidad remanente. Convendría un cierto reposo previo, pero la distorsión es siempre la misma, y se puede considerar.

En otra aplicación, el **Sistema** guarda en la memoria las capacidades encontradas a lo largo de un periodo de tiempo, genera una curva y la extrapola, considerando su base de datos donde están **L**_M y **L**_D, y conociendo el trato previsible, permite obtener la **vida esperada t**_W y **la remanente t**_R. En la **Figura 5**, hemos considerado que el trato será similar al anteriormente recibido.

Adicionalmente a las ventajas ya expuestas, la rápida respuesta de este dispositivo permite una utilización más eficiente de la energía de las baterías, así como un mantenimiento más correcto, e incluso localizar prematuramente cualquier anomalía. O igualar las células de un pack en fabricación. Todo ello supone optimizar las prestaciones y la vida de la batería con el correspondiente ahorro de costes.

En este caso, la Realización Preferente coincide con la Aplicación Industrial.

REIVINDICACIONES

- 1) Un **método** para calcular la energía disponible, **ED**, en una batería eléctrica **W** en cualquier momento de su vida sin descargarla, así como su **autonomía**, **capacidad** y **vida remanente**. Para lo que se necesita la siguiente información y aparataje.
- a) Conocimiento de todos los parámetros y curvas que definen la batería usada W cuando era nueva B, como asimismo de varias baterías nuevas de menor capacidad, a la temperatura de trabajo T_n, para poder calcular las curvas G_{n,l}.
 - **b)** Una conexión adecuada a un descargador, voltímetro, amperímetro, sensor de temperatura, y un cargador que pueda desconectarse.
- A continuación, la invención se caracteriza por comprender la obtención de las curvas de descarga $G_{n,l}$. Dada una batería nueva B con capacidad C_n , voltaje V_N y a temperatura T_n , se llama así a una familia de curvas producidas por una misma ID fija I, aplicada a B y a varias baterías nuevas de diferentes capacidades inferiores, todas a igual temperatura.

Para aplicar el método se realizan las conexiones necesarias, pudiendo darse **dos situaciones** que detectará el amperímetro:

- I) Que la batería se encuentre en reposo, aislada, sin carga ni descarga alguna.
- II) Que exista una descarga que no se pueda o no se desee evitar.

15

20

Primer caso. Se realiza a **W** una descarga I_1 que produce un voltaje respuesta V_1 . Yendo a la familia de curvas $G_{n,I1}$, encontramos la **capacidad** C_1 , correspondiente a una **batería equivalente A**. La **ED** de **A** es idéntica a la **ED** de **W**.

Segundo caso. Si la **ID** existente es I_2 y el voltaje V_2 se busca en $G_{n,l2}$ y se obtiene C_2 . A continuación se superpone una descarga adicional I_1 , ya calculada, quedando $I_3=I_1+I_2$, lo que produce un voltaje respuesta V_3 , y con él se busca en $G_{n,l3}$ la **capacidad** C_3 , que ponderando con C_2 proporciona la **ED**.

2) Un método para calcular la energía disponible ED según la reivindicación 1, caracterizado por comprender la obtención de las curvas de descarga G_{n,I} como sigue. Dada una batería nueva B con capacidad C_n, voltaje V_N y a temperatura T_n, se llama así a una familia de curvas producidas por una misma ID fija I, aplicada a B y a varias baterías nuevas y cargadas de diferentes capacidades inferiores a B, todas a igual temperatura.

- 3) Un **método** para calcular la energía disponible **ED** según la **reivindicación 1**, caracterizado por obtener la **autonomía**, comprendiendo el conocimiento de **ED** y la utilización del **BEC**, estático o dinámico.
- 4) Un método para calcular la energía disponible ED según la reivindicación 1, caracterizado por la obtención de la capacidad de la batería W. Para ello se utiliza un aparataje que comprenda un amperímetro y un cargador. Cuando se detecte que la intensidad que se facilita a W al recargarse es muy pequeña o nula, se desconecta el cargador y, se calcula en ese momento la ED que resulta ser la capacidad.

5

10

25

- 5) Un método para calcular la energía disponible ED según la reivindicación 4, caracterizado por hallar la vida remanente t_R de una batería W, en un determinado momento P (t_P, C_R), lo que comprende conocer el trato previsto y la interpolación entre las curvas L_M y L_D, hasta que la ordenada alcanza la capacidad operativa C_m, con lo que se obtiene la vida esperada t_W. A dicho valor se le resta el tiempo de servicio en el momento del cálculo t_P, lo que proporciona la vida remanente t_R.
- 6) Un sistema que automatiza el método desarrollado en las reivindicaciones anteriores para calcular la energía disponible ED de cualquier batería eléctrica W, en todo momento de su vida, sin descargarla, así como su autonomía, capacidad y vida remanente, caracterizado por comprender interfaces, un descargador, sensor térmico, voltímetro, amperímetro, cronómetro, una MCU con el software necesario para registrar, memorizar, y analizar las curvas que produzca el descargador y compararlas con las que existan en la memoria facilitadas por el fabricante o calculadas previamente, así como todos los datos precisos, algoritmos, y controlar las comunicaciones con equipos externos, etc.
 - El **Sistema** comprueba si la batería **W** está en reposo o no. Si lo está, verifica la temperatura T_n , escoge la descarga, encuentra en $G_{n,l}$ la batería equivalente **A** y con ella la **ED**. Si no está en reposo se halla en primer lugar, y siempre con la ayuda de las curvas $G_{n,l}$, la **ED** correspondiente a la descarga detectada. A continuación, se superpone otra intensidad de descarga, y con la suma de ambas se vuelve a calcular la **ED**, ponderando entre ambas.
 - 7) Un sistema que automatiza el método según la reivindicación 6, caracterizado por hallar la autonomía remanente, lo que comprende conocer ED y el BEC. El BEC puede ser dinámico y la temperatura ir cambiando, lo que implica nuevos valores de ED, considerándose también la incorporación de datos tanto a través del interfaz así como por cualquier vía telemática.

8) Un sistema que automatiza el método según la reivindicación 6, caracterizado por obtener la capacidad de W. El Sistema comprende un cargador y un amperímetro. Al final de la recarga de W, cuando el amperímetro detecta que la intensidad que recibe es nula o muy pequeña, el software del Sistema procede a desconectar el cargador y a hallar ED, valor que coincide con la capacidad de W en ese momento y a esa temperatura.

5

10

- 9) Un sistema que automatiza el método según la reivindicación 8 caracterizado por obtener la vida remanente t_R de una batería W en cualquier momento t_P , para lo que el Sistema genera la curva L_W con las capacidades en función del tiempo hasta t_P . Conocido el trato previsto a W, el Sistema interpola L_W entre L_M y L_D y extrapola hasta $y = C_m$, consiguiendo la vida esperada t_W , a la que se resta t_P para obtener t_R .
- **10)** Un **sistema** que automatiza el **método** según la **reivindicación 6,** caracterizado por comprender un **software** que memoriza y utiliza todos los datos que facilita el fabricante, comprendiendo los específicos de las distintas baterías, curvas de descarga a diferentes temperaturas, la que relaciona capacidad y temperatura, controlando todo el hardware incluido en el **Sistema**, lo que comprende leer, registrar y utilizar las bases de datos que se proporcionen, comunicarse con los interfaces, y con cualquier equipo ajeno al **Sistema**, incluyendo los datos dinámicos que le informen por cualquier vía telemática, etc.

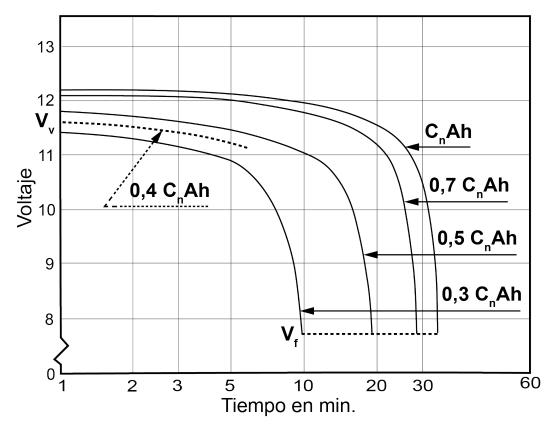


Figura 1



Figura 2

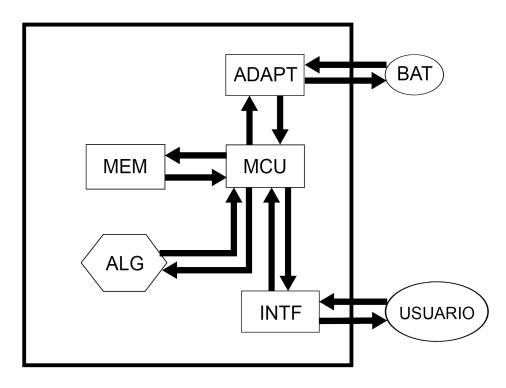


Figura 3

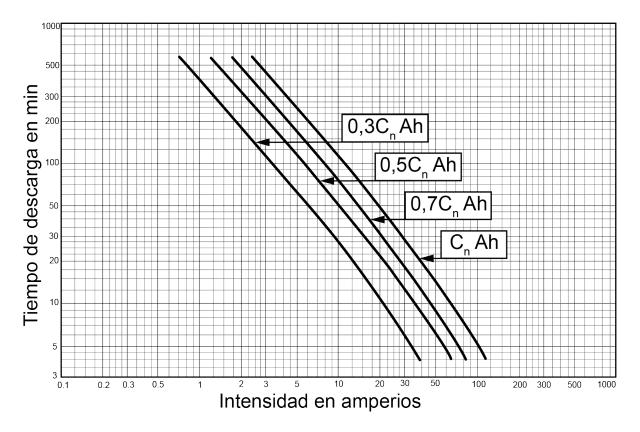


Figura 4

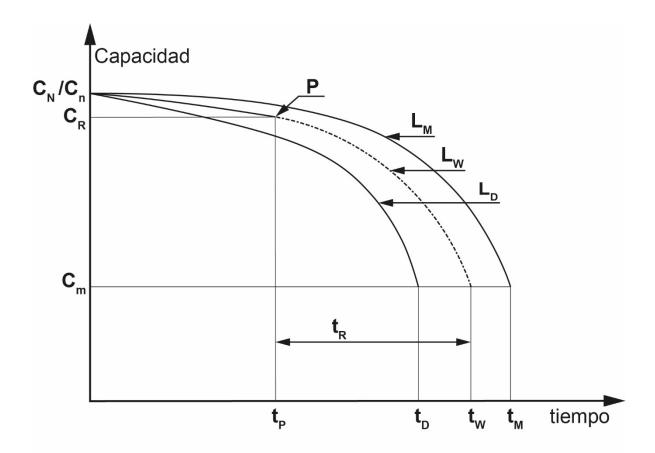


Figura 5

RESUMEN

Este método calcula la **energía disponible**, **ED**, de cualquier batería **W**, sin descargarla, a cualquier temperatura T_n y en todo momento. Se genera una familia de curvas $G_{n,l}$, propias de cada batería y temperatura, descargando baterías de diferentes capacidades a una intensidad de descarga, **ID**, fija. Descargando **W** con igual **ID** produce un voltaje respuesta con el que entrando en $G_{n,l}$, se obtiene **ED**. También proporciona su **capacidad**, **autonomía**, y **vida remanente**. Cuando la batería está completamente cargada, **ED** es la capacidad. Calculando L_W , se halla la vida remanente. Con la **ED** y el **Balance de Consumos**, se obtiene la autonomía. Se automatiza lo expuesto conectando a un **Sistema** que comprenda; **MCU**, sensor de temperatura, descargador, voltímetro, amperímetro, interfaz, etc., obteniéndose la **ED**, **capacidad**, **autonomía**, y **vida remanente**. La utilización de este método permite la optimización de las baterías, así como conocer su autonomía, por ejemplo, en un **EV**.

Figura 2

15

5